COMBINATORICA

Akadémiai Kiadó – Springer-Verlag

BOUNDING THE VERTEX COVER NUMBER OF A HYPERGRAPH

GUO-LI DING, PAUL SEYMOUR and PETER WINKLER

Received February, 1991 Revised April, 1993

For a hypergraph H, we denote by

(i) $\tau(H)$ the minimum k such that some set of k vertices meets all the edges,

(ii) $\nu(H)$ the maximum k such that some k edges are pairwise disjoint, and

(iii) $\lambda(H)$ the maximum $k \geq 2$ such that the incidence matrix of H has as a submatrix the transpose of the incidence matrix of the complete graph K_k .

We show that $\tau(H)$ is bounded above by a function of $\nu(H)$ and $\lambda(H)$, and indeed that if $\lambda(H)$ is bounded by a constant then $\tau(H)$ is at most a polynomial function of $\nu(H)$.

1. Introduction

A hypergraph H consists of a finite set V(H) of vertices and a set E(H) of subsets of V(H) called edges. If every edge is non-empty, we denote by $\nu(H)$ the maximum k such that there are edges e_1, \ldots, e_k which are pairwise disjoint, and by $\tau(H)$ the minimum k such that there is a set $X \subseteq V(H)$ with |X| = k which intersects every edge.

It is immediate that $\tau(H) \ge \nu(H)$, and in fact the "fractional" versions of these two parameters are equal by linear programming duality. The non-equality of $\tau(H)$ and $\nu(H)$ in general is a fundamental property (and critical difficulty) of *integer* programming, and more particularly of linear optimization in which the variables are constrained to take only the values 0 or 1.

In fact there are several interesting types of hypergraph for which equality holds; but typically $\tau(H) > \nu(H)$ and indeed $\tau(H)$ is not even bounded by any function of $\nu(H)$. To see this, let K_n be the complete graph on n vertices, and let H be the hypergraph whose vertices are the edges of K_n and whose edges are the stars of K_n (a star is the set of all edges incident with any one vertex). Then $\nu(H) = 1$ and $\tau(H) \ge n/2$.

One way to state our main result is to say that any such example (that is, any sequence of hypergraphs with ν bounded and τ unbounded) contains this one, the hypergraph of stars of K_n , for arbitrarily large n. Let us formulate this more precisely. We define $\lambda(H)$ (or just λ , when only one hypergraph is under consideration) to be the maximum $k \geq 2$ such that there are edges e_1, \ldots, e_k with

the property that for $1 \le i < j \le k$, some vertex v satisfies

$${h: 1 \le h \le k, v \in e_h} = {i, j}.$$

We put $\lambda(H) = 2$ if there is no such k. Our main result is

(1.1) For any hypergraph with all edges non-empty,

$$\tau \le 11\lambda^2(\lambda + \nu + 3) {\lambda + \nu \choose \nu}^2.$$

Here are two applications of (1.1).

Application 1. Let V be a finite set of points in the plane, and let C be a finite set of rectangles, each with sides parallel to the x- and y-axes, and each containing a member of V. Let k be a positive integer. Then either

(i) there are k+1 members of C such that no member of V is in more than one of them, or

(ii) there exists $Y \subseteq V$ with $|Y| \le (k+63)^{63}$ meeting every member of C.

For, let H be the hypergraph with V(H) = V and $E(H) = \{C \cap V : C \in \mathbf{C}\}$. Suppose that $\lambda(H) \geq 64$. Then there are 64 members C_1, \ldots, C_{64} of H such that for $1 \leq i < j \leq 64$ there exists $v_{ij} \in V$ belonging to C_i and to C_j and not to any of the other 62 rectangles. In particular $C_i \cap C_j \neq \emptyset$ $(1 \leq i < j \leq 64)$ and so, by an easily established property of aligned rectangles, $\bigcap_{1 \leq i < j \leq 64} C_i \neq \emptyset$. We may assume,

therefore, that each C_i contains the origin (0,0).

For $1 \le i < j \le 64$, let us say that the pair ij has color 1, 2, 3 or 4 depending on which quadrant contains v_{ij} (choosing arbitrarily if v_{ij} belongs to more than one quadrant). We obtain a partition of $E(K_{64})$ into four sets, and so by [3], there exist $i_1 < i_2 < i_3$ such that $i_1 i_2$, $i_2 i_3$ and $i_1 i_3$ all have the same colors. But it is easy to see that this is impossible. Hence $\lambda(H) \le 63$. By (1.1),

$$\tau \le 11 \cdot 63^2 (\nu + 66) {\binom{\nu + 63}{63}}^2 \le (\nu + 63)^{127}.$$

This bound has now been improved to $2 \cdot 10^5 \nu^8$ by Pach and Törőcsik [6].

Application 2. Let G be a graph drawn in a connected compact surface Σ , let $X \subseteq V(G)$, and let $k \ge 0$ be an integer. Let n be maximum so that K_n can be drawn in Σ . Then either there are k+1 members of X, no two on a common region, or there are $\le (n+k)^{2n+1}$ regions of G, with X in the closure of their union.

For let H be the hypergraph with V(H) the set of all regions of G and with edges e_v ($v \in X$), where e_v denotes the set of regions incident with v. Now $\lambda(H) \le n$; for there exist λ members of X, such that for any two of them some region is incident with those two and no others, and so K_{λ} can be drawn in Σ . From (1.1),

$$\tau(H) \le 11n^2(n+\nu+3)\binom{n+\nu}{n}^2 \le (n+\nu)^{2n+1},$$

since $n \ge 4$.

Actually, this is a weak form of a result of Bienstock and Dean [1].

For $d \ge 1$, let us define $\nu_d(H)$ to be the maximum k such that there are edges e_1, \ldots, e_k with no vertex in more than d of them. (Thus $\nu_1(H) = \nu(H)$.) Again, for any given d, τ is not bounded by any function of ν_d , and indeed ν_d+1 is not bounded by a function of ν_d (the latter is a stronger statement since $\tau(H) \ge \nu_{d+1}/(d+1)$). For example, let K be the hypergraph of all (d+1)-subsets of an n-set where $n \ge d+1$, and let H be the hypergraph with V(H) = E(K) and

$$E(H) = \{ \{ e : v \in e \in E(K) \} : v \in V(K) \}.$$

Then $\nu_d(H) = d$ and $\nu_{d+1}(H) = n$.

We can extend (1.1) to a result for $\nu_d(H)$ as follows. For $d \ge 1$, we define $\lambda_d(H)$ to be the maximum $k \ge d$ such that there are edges e_1, \ldots, e_k with the property that for all $X \subseteq \{1, \ldots, k\}$ with |X| = d, some vertex v satisfies

$$\{h : 1 \le h \le k, v \in e_h\} = X.$$

(If there is no such k we define $\lambda_d(H) = d$.) Thus, $\lambda_2(H) = \lambda(H)$. We shall show that for any $d \ge 2$ and any hypergraph H, $\tau(H)$ (and thus also $\nu_d(H)$) is bounded above by a function of $\lambda_d(H)$ and $\nu_{d-1}(H)$; and then (1.1) will be obtained by setting d=2.

2. Faithful sets

Let H be a hypergraph and $d \ge 0$ an integer. We say that $Y \subseteq V(H)$ is d-faithful if for every $X \subseteq Y$ with |X| = d which is a subset of an edge of H, there is an edge $e \in E(H)$ with $e \cap Y = X$. To prove (1.1) we need some results about d-faithful sets. We begin with the following.

(2.1) Let $\varepsilon \geq 0$, let H be a hypergraph so that $|e| \leq \varepsilon |V(H)|$ for every edge e, let $d \geq 0$ be an integer, and let k be an integer with $d+1 \leq k \leq |V(H)|$. Then there is a d-faithful set of cardinality $\geq k \left(1-\varepsilon {k-1 \choose d}\right)$.

Proof. We may assume that $\varepsilon \leq 1$, for otherwise the result is trivial, since the empty set is d-faithful. Let

$$A = \{X \subseteq V(H) : |X| = d \text{ and } X \subseteq e \text{ for some edge } e\}.$$

For each $X \in A$, let $f(X) \subseteq V(H) - X$ be such that $X \cup f(X) \in E(H)$. Thus, each f(X) has cardinality $\leq \varepsilon n - d \leq \varepsilon (n - d)$, where n = |V(H)|. For each $Z \subseteq V(H)$, let

$$\beta(Z) = \{z \in Z : \text{ there exists } X \in \mathsf{A} \text{ with } X \subseteq Z \text{ and } z \in f(X)\}.$$

Now for each $X \in A$ and each $z \in f(X)$ there are $\binom{n-d-1}{k-d-1}$ k-sets in V(H) which include $X \cup \{z\}$, since $d+1 \le k \le |V(H)|$. Thus, summing over all $Z \subseteq V(H)$ with |Z|=k, we obtain

$$\begin{split} & \sum_{Z} |\beta(Z)| \leq \sum_{Z} \sum \left(|f(X) \cap Z| \ : \ X \in \mathsf{A}, \ X \subseteq Z \right) = \sum_{X \in \mathsf{A}} \sum_{z \in f(X)} \binom{n-d-1}{k-d-1} \\ & \leq \sum_{X \in \mathsf{A}} \varepsilon(n-d) \binom{n-d-1}{k-d-1} \leq \binom{n}{d} \varepsilon(n-d) \binom{n-d-1}{k-d-1} = \varepsilon k \binom{k-1}{d} \binom{n}{k}. \end{split}$$

Consequently there exists $Z \subseteq V(H)$ with |Z| = k such that $|\beta(Z)| \le \varepsilon k {k-1 \choose d}$. Let $Y = Z - \beta(Z)$. Then Y is d-faithful, for if $X \subseteq Y$ and $X \in A$ then $f(X) \subseteq \beta(Z)$ and so $(X \cup f(X)) \cap Y = X$. But

$$|Y| = |Z| - |\beta(Z)| \ge k - \varepsilon k \binom{k-1}{d}$$

as required.

We deduce

(2.2) Let $\varepsilon \ge 0$, let H be a hypergraph such that $1 \le \varepsilon |V(H)|$ and $|e| \le \varepsilon |V(H)|$ for every edge e, and let d be an integer with $1 \le d \le |V(H)|$. Then there is a d-faithful set of cardinality

$$> \frac{d}{d+1} \left(\frac{d!}{d+1} \varepsilon^{-1} \right)^{\frac{1}{d}}.$$

Proof. Let k be the smallest integer with $k > \left(\frac{d!}{d+1}\varepsilon^{-1}\right)^{\frac{1}{d}}$, and let n = |V(H)|. Since $d \le n$, there is a subset of V(H) of cardinality d, which is trivially d-faithful. We may assume that it does not satisfy the theorem, and consequently that $d+1 \le k$. Now

$$\frac{d!}{d+1}n^{1-d} < d^{d-1}n^{1-d} \le 1 \le \varepsilon n,$$

and so

$$n > \left(\frac{d!}{d+1}\varepsilon^{-1}\right)^{1/d};$$

and hence $k \leq n$, from the definition of k. We have shown then that $d+1 \leq k \leq n$. From (2.1) there is a d-faithful set X of cardinality at least $k \left(1 - \varepsilon {k-1 \choose d}\right)$. But by the minimality of k,

$$k-1 \le \left(\frac{d!}{d+1}\varepsilon^{-1}\right)^{1/d},$$

and so

$$\binom{k-1}{d} \le \frac{(k-1)^d}{d!} \le \frac{\varepsilon^{-1}}{d+1};$$

and consequently

$$|X| \ge k \left(1 - \varepsilon {k-1 \choose d} \right) \ge k \left(1 - \frac{1}{d+1}\right) = \frac{d}{d+1}k.$$

The result follows.

3. Ramsey's theorem

Let $k, r, s \ge 0$ be integers. We denote by R(k,r,s) the smallest integer $n \ge 0$ such that, if V is a set of cardinality n, then for every set A of k-subsets of V, either (i) there exists $X \subseteq V$ with |X| > r such that every k-subset of X belongs to A, or

(ii) there exists $Y \subseteq V$ with |Y| > s such that no k-subset of Y belongs to A. Ramsey's theorem asserts that R(k,r,s) exists, for all k, r, s. Trivially R(1,r,s) = r + s + 1, and it is easy to see that $R(2,r,s) \le {r+s \choose r}$.

Let H be a hypergraph, and $d \ge 1$ an integer. We denote by α_d or $\alpha_d(H)$ the maximum of $\sum_{v \in V(H)} w(v)$, taken over all functions $w: V(H) \to \mathbb{Z}_+$ (the non-

negative integers) such that $\sum_{v \in e} w(v) \le d$ for every $e \in E(H)$. Thus, α_d is defined if and only if every vertex belongs to an edge.

A subset $Z \subseteq V(H)$ is said to be d-complete (in H), where $d \ge 0$ is an integer, if $|Z| \ge d$ and for every $X \subseteq Z$ with |X| = d there is an edge $e \in E(H)$ with $e \cap Z = X$. We define ϕ_d or $\phi_d(H)$ to be the maximum cardinality of a d-complete subset of V(H), or $\phi_d = d$ if there is no such subset.

(3.1) Let H be a hypergraph with $V(H) \neq \emptyset$ such that every vertex belongs to an edge, and let $d \geq 2$ be an integer. Then there exists $e \in E(H)$ such that

$$\frac{|e|}{|V(H)|} > \frac{d!d^d}{(d+1)^{d+1}} R(d,\phi_d,\alpha_{d-1})^{-d}.$$

Proof. Let |V(H)| = n, and let

$$\varepsilon = \frac{d!d^d}{(d+1)^{d+1}}R(d,\phi_d,\alpha_{d-1})^{-d}.$$

Now $\phi_d \geq d \geq d-1$, and $\alpha_{d-1} \geq d-1$ since $V(H) \neq \emptyset$, and so $R(d, \phi_d, \alpha_{d-1}) \geq d$. Consequently, $\varepsilon \leq d^{-1}$. Suppose for a contradiction that $|e| \leq \varepsilon n$ for every edge e. Then $\varepsilon n \geq 1$ since H has a non-empty edge, and so $d \leq n$. By (2.2) there is a d-faithful set $Z \subseteq V(H)$ with

$$|Z| \ge \frac{d}{d+1} \left(\frac{d!}{d+1} \varepsilon^{-1} \right)^{\frac{1}{d}} = R(d, \phi_d, \alpha_{d-1}).$$

Let A be the set of all $X \subseteq Z$ with |X| = d such that $X \subseteq e$ for some edge e. By definition of α_{d-1} , there does not exist $Y \subseteq Z$ with $|Y| > \alpha_{d-1}$ such that $|Y \cap e| \le d-1$ for every edge $e \in E(H)$, and in particular there does not exist $Y \subseteq Z$ with $|Y| > \alpha_{d-1}$ including no member of A. By definition of $R(d, \phi_d, \alpha_{d-1})$, there exists $Y \subseteq Z$ with $|Y| > \phi_d$ such that A contains every d-subset of Y. We claim that Y is d-complete. For let $X \subseteq Y$ with |X| = d. Since $X \in A$, there exists $e \in E(H)$ with $X \subseteq e$. Since |X| = d and Z is d-faithful, e may be chosen so that $e \cap Z = X$, and in particular $e \cap Y = X$. Thus Y is d-complete. Yet $|Y| > \phi_d$, a contradiction. It follows that $|e| > \varepsilon n$ for some edge e.

4. Multiplying vertices

Let H be a hypergraph and let $w:V(H)\to\mathbb{Z}_+$ be a function. We denote by H^w the hypergraph obtained as follows. For each $v\in V(H)$ let W(v) be a set of cardinality w(v), so that the sets W(v) $(v\in V(H))$ are mutually disjoint. Let $V(H^w)=\bigcup_{v\in V(H)}W(v)$. Let the edges of H^w be the sets $\bigcup_{v\in e}W(v)$, as e ranges over

E(H). Thus, roughly, H^w is obtained from H by replacing each vertex v by w(v) copies of itself.

(4.1) Let H be a hypergraph and $w: V(H) \to \mathbb{Z}_+$ a function; and let $d \ge 1$ be an integer. Then $\phi_d(H^w) \le \phi_d(H)$.

Proof. Let the sets W(v) $(v \in V(H))$ be as above. By definition, $\phi_d(H) \geq d$, and so we may assume that $\phi_d(H^w) \geq d+1$. It follows that there exists $Z \subseteq V(H^w)$ with $|Z| = \phi_d(H) \geq d+1$, such that Z is d-complete in H^w . We claim that

(i) $|Z \cap W(v)| \le 1$ for each $v \in V(H)$.

For let $v \in V(H)$, and suppose that $|Z \cap W(v)| \ge 2$. Since $|Z| \ge d+1$ and $d \ge 1$, there exists $X \subseteq Z$ with |X| = d such that $X \cap W(v) \ne \emptyset$ and $W(v) \cap Z \not\subseteq X$. Since Z is d-complete in H^w , there exists $e \in H^w$ with $e \cap Z = X$. Then $W(v) \subseteq e$, since $X \cap W(v) \ne \emptyset$; and so $W(v) \cap Z \subseteq e \cap Z = X$, a contradiction. This proves (i).

Let $Y = \{v \in V(H) : Z \cap W(v) \neq \emptyset\}$. By (i), |Y| = |Z|, and we claim that Y is d-complete in H. For let $X \subseteq Y$ with |X| = d, and let $X' = \bigcup \{Z \cap W(v) : v \in X\}$. Then |X'| = |X| = d and $X' \subseteq Z$, and so since Z is d-complete in H, there exists $f \in E(H^w)$ with $f \cap Z = X'$. Let $e \in E(H)$ be such that $f = \bigcup \{W(v) : v \in e\}$. Then

$$\bigcup_{v \in e} (W(v) \cap Z) = X' = \bigcup_{v \in X} (W(v) \cap Z)$$

and since the sets $W(v) \cap Z$ $(v \in Y)$ are disjoint and non-empty, it follows that $e \cap Y = X \cap Y = X$. Hence Y is d-complete in H, and so

$$\phi_d(H^w) = |Z| = |Y| \le \phi_d(H)$$

as required.

Let H be a hypergraph. We denote by $\alpha^*(H)$ the maximum of $\sum_{v \in V(H)} w(v)$.

taken over all functions $w:V(H)\to\mathbb{R}_+$ (the non-negative reals) such that $\sum_{v\in e}w(v)\leq 1$ for every $e\in E(H)$. Thus, $\alpha^*(H)$ is defined if and only if every vertex belongs to some edge. It is easy to see that

$$\lim_{d\to\infty}\frac{1}{d}\alpha_d(H)=\max_{d\geq 1}\frac{1}{d}\alpha_d(H)=\alpha^*(H).$$

From (3.1) and (4.1) we deduce

(4.2) Let H be a hypergraph such that every vertex belongs to an edge, and let $d \ge 2$ be an integer. Then

$$\alpha^*(H) \le \frac{(d+1)^{d+1}}{d!d^d} R(d, \phi_d, \alpha_{d-1})^d.$$

Proof. There exists $w:V(H)\to\mathbb{R}_+$ such that $\sum_{v\in e}w(v)\leq 1$ for every edge e, and $\sum_{v\in V(H)}w(v)=\alpha^*(H)$; and w may be chosen rational-valued, as is easily seen. Let N>0 be an integer such that w'(v)=Nw(v) is an integer for all $v\in V(H)$. Define $H^{w'}$ using sets W(v) $(v\in V(H))$. Now

$$|V(H^{w'})| = \sum_{v \in V(H)} w'(v) = \sum_{v \in V(H)} Nw(v) = N\alpha^*(H).$$

For each edge $e' \in E(H^{w'})$, let $e \in E(H)$ be such that $e' = \bigcup_{v \in e} W(v)$; then

$$|e'| = \sum_{v \in e} w'(v) = \sum_{v \in e} Nw(v) \le N.$$

Consequently,

$$\frac{|e'|}{|V(H^{w'})|} \le \alpha^*(H)^{-1}$$

for every $e' \in E(H^{w'})$ (for we may assume that $\alpha^*(H) > 0$, since otherwise the result is trivial).

By (3.1) applied to $H^{w'}$,

$$\alpha^*(H)^{-1} > \frac{d!d^d}{(d+1)^{d+1}} R(d, \phi_d(H^{w'}), \alpha_{d-1}(H^{w'}))^{-d}.$$

But $\phi_d(H^{w'}) \le \phi_d(H)$ by (4.1), and clearly $\alpha_{d-1}(H^{w'}) \le \alpha_{d-1}(H)$, and so

$$R(d, \phi_d(H), \alpha_{d-1}(H)) \ge R(d, \phi_d(H^{w'}), \alpha_{d-1}(H^{w'})).$$

It follows that

$$\alpha^*(H) < \frac{(d+1)^{d+1}}{d!d^d} R(d, \phi_d(H), \alpha_{d-1}(H))^d$$

as required.

5. Vapnik-Chervonenkis dimension

For a hypergraph H with $|E(H)| \ge 1$, we denote by δ or $\delta(H)$ the Vapnik-Chervonenkis dimension of H, that is, the maximum cardinality of a subset $Z \subseteq V(H)$ such that for every $X \subseteq Z$ there exists $e \in E(H)$ with $e \cap Z = X$. (See [2,4,8].) We see that $\delta(H) \ge 0$, and $\delta(H) = 0$ if and only if |E(H)| = 1. We need a strengthening of a result of Haussler and Welzl [4], due to Blumer, Ehrenfeucht, Haussler and Warmuth [2]. (See also [5] for a more general result with the strongest known bounds.) For the reader's convenience (and since what we really want is a slight variant of the latter result) we give a proof in full. (Logarithms are to base 2.)

(5.1) Let H be a hypergraph with $|E(H)| \ge 2$, and let $0 < \varepsilon \le 1$, such that $|e| \ge \varepsilon |V(H)|$ for every edge $e \in E(H)$. Then $\tau \le 2\delta \varepsilon^{-1} \log(11\varepsilon^{-1})$.

We use the following lemma of [8].

(5.2) Let H be a hypergraph with |V(H)| = n and $E(H) \neq \emptyset$. Then

$$|E(H)| \le \binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{\delta}.$$

Proof. We proceed by induction on n. If $n \le \delta$ the result is clear, and so we assume that $n > \delta$ and in particular n > 0. Choose $v \in V(H)$. Let H_1 be the hypergraph with $V(H_1) = V(H) - \{v\}$ and

$$E(H_1) = \{e \cap (V(H) - \{v\}) : e \in E(H)\};$$

then $\delta(H_1) \leq \delta(H)$, and so $|E(H_1)| \leq \binom{n-1}{0} + \ldots + \binom{n-1}{\delta}$ from the inductive hypothesis. Let H_2 be the hypergraph with $V(H_2) = V(H) - \{v\}$ and

$$E(H_2) = \{ e \in E(H) : v \notin e \text{ and } e \cup \{v\} \in E(H) \}.$$

Then $|E(H_1)| + |E(H_2)| = |E(H)|$. If $E(H_2) = \emptyset$ then $|E(H_1)| = |E(H)|$ and the result follows, and so we assume $E(H_2) \neq \emptyset$. Hence $\delta(H_2)$ exists and $\delta(H_2) \leq \delta(H) - 1$. Consequently, $|E(H_2)| \leq {n-1 \choose 0} + \ldots + {n-1 \choose \delta-1}$, and the result follows by adding.

Proof of (5.1). Let V(H) = V and |V| = n. Let $\tau = 2\delta\varepsilon^{-1}\log(c\varepsilon^{-1})$; we shall prove that c < 11, from which the theorem follows. Let $t = \tau - 1$. We may assume that $t > \delta$, for otherwise the theorem holds.

For each $e \in E(H)$, let A_e be the set of all $(x_1, \ldots, x_{2t}) \in V^{2t}$ such that $x_1, \ldots, x_t \notin e$ and $|\{x_{t+1}, \ldots, x_{2t}\} \cap e| \geq \varepsilon t - 1$; and let $A = \bigcup (A_e : e \in E(H))$. Let $(x_1, \ldots, x_t) \in V^t$. Since $t < \tau$, it follows that there exists $e \in E(H)$ with $\{x_1, \ldots, x_t\} \cap e = \emptyset$.

We now make use of the fact that the median of a binomial distribution is within one of its mean; this can be deduced, for example, from inequality (v) on the bottom of page 404 of [7]. Since $|e| \ge \varepsilon t$, it follows that there are at least $n^t/2$

sequences $(x_{t+1},...,x_{2t})$ such that $(x_1,...,x_{2t}) \in A_e$. Summing over all $(x_1,...,x_t)$, we deduce that $|A| \ge n^{2t}/2$.

For $(x_1,\ldots,x_{2t})\in V^{2t}$, its support is the function μ with domain V, where for $v\in V$, $\mu(v)$ is the number of values of i $(1\leq i\leq 2t)$ with $x_i=v$. Let μ be the support of a member of V^{2t} . Let S be the set of all $(x_1,\ldots,x_{2t})\in V^{2t}$ with support μ , and let $S_e=S\cap A_e$ for $e\in E(H)$. We claim that for each $e\in E(H)$, $|S_e|\leq 2^{1-\varepsilon t}|S|$. For let $k=\sum_{v\in e}\mu(v)$. If k>t or $k<\varepsilon t-1$ then $S_e=\emptyset$ and the inequality holds; and otherwise

$$|S_e| = \frac{t(t-1)\dots(t-k+1)}{2t(2t-1)\dots(2t-k+1)}|S| \le 2^{-k}|S| \le 2^{1-\varepsilon t}|S|.$$

This proves the claim. Now let $X = \{v \in V : \mu(v) > 0\}$. If $e, f \in E(H)$ and $e \cap X = f \cap X$ then $S_e = S_f$; and by (5.2), since $|X| \le 2t$ and $t \ge \delta \ge 1$, there are at most

$$\binom{2t}{0} + \ldots + \binom{2t}{\delta} \le \frac{(2t+2)^{\delta}}{(\delta-1)!} \le \frac{1}{4} (8\tau\delta^{-1})^{\delta}$$

edges $e \in E(H)$ with the sets $e \cap X$ distinct. Hence there are at most that many distinct sets S_e , and so

$$\left| \bigcup_{e \in E(H)} \mathsf{S}_e \right| \le \frac{1}{4} (8\tau \delta^{-1})^{\delta} 2^{1-\varepsilon t} |\mathsf{S}|.$$

Every member of A belongs to $\bigcup_{e \in E(H)} \mathsf{S}_e$ for some choice of μ , and so, summing over all μ , we deduce that

$$|\mathsf{A}| \le \frac{1}{4} (8\tau \delta^{-1})^{\delta} 2^{1-\varepsilon t} n^{2t}.$$

Since $|A| \ge n^{2t}/2$, it follows that $(8\tau\delta^{-1})^{\delta}2^{-\varepsilon t} \ge 1$, and hence

$$8\tau\delta^{-1} > 2^{\varepsilon t\delta^{-1}} > 2^{\varepsilon \tau\delta^{-1}}/2.$$

Now $\tau = 2\delta \varepsilon^{-1} \log(c\varepsilon^{-1})$, and so

$$16\varepsilon^{-1}\log(c\varepsilon^{-1}) \ge c^2\varepsilon^{-2}/2.$$

We wish to prove that c < 11, and we may therefore assume that $c\varepsilon^{-1} > c > e$, and hence that

$$\frac{\log(c\varepsilon^{-1})}{c\varepsilon^{-1}} < \frac{\log(c)}{c}.$$

Consequently, $32\log(c) \ge c^2$, and hence c < 11. The result follows.

We also need the following. (H^w is defined in Section 4.)

(5.3) Let H be a hypergraph with $E(H) \neq \emptyset$, and let $w : V(H) \to \mathbb{Z}_+$. Then $\delta(H^w) \leq \delta(H)$.

Proof. Let the sets W(v) $(v \in V(H))$ be as in the start of Section 4. Now $E(H^w) \neq \emptyset$; let $Z \subseteq V(H^w)$ with $|Z| = \delta(H^w)$ such that for all $X \subseteq Z$ there exists $f \in E(H^w)$ with $f \cap Z = X$. As in (4.1), $|Z \cap W(v)| \leq 1$ for all $v \in V(H)$. Let

$$Y = \{ v \in V(H) : |Z \cap W(v)| = 1 \};$$

H

then the result follows as in (4.1).

The following method of reformulating (5.1) is due independently to L. Lovász (private communication) and to Komlós et al. [5]. If H is a hypergraph with all edges non-empty, we define τ^* or $\tau^*(H)$ to be the minimum of $\sum_{v \in V(H)} w(v)$, taken

over all functions $w\,:\,V(H)\to\mathbb{R}_+$ such that $\sum_{v\in e}w(v)\geq 1$ for every $e\in E(H)$.

(5.4) Let H be a hypergraph with $|E(H)| \ge 2$ and with every edge non-empty. Then

$$\tau \leq 2\delta \tau^* \log(11\tau^*).$$

Proof. Choose $w^*:V(H)\to\mathbb{R}_+$ such that $\sum_{v\in V(H)}w^*(v)= au^*(H)$ and $\sum_{v\in e}w^*(v)\geq 1$

for every $e \in E(H)$. We may choose w^* rational-valued. Let N > 0 be an integer so that $w(v) = Nw^*(v)$ is an integer for all $v \in V(H)$. Then

$$|V(H^w)| = \sum_{v \in V(H)} w(v) = N \sum_{v \in V(H)} w^*(v) = N\tau^*(H)$$

and for every edge $f = \bigcup (W(v) : v \in e)$ of H^w (where $e \in E(H)$ and the sets W(v) are as usual) we have

$$|f| = \sum_{v \in e} |W(v)| = \sum_{v \in e} w(v) = N \sum_{v \in e} w^*(v) \ge N.$$

(In particular, every edge of H^w is non-empty.) Consequently, $|f| \ge \varepsilon |V(H^w)|$ where $\varepsilon = (\tau^*(H))^{-1}$. Certainly $\tau^*(H) \ge 1$, since $\delta(H) > 0$ and so $E(H) \ne \emptyset$; and hence $0 < \varepsilon \le 1$. If $|E(H^w)| \le 1$, then $\tau(H^w) \le 1$ and so $\tau(H) \le 1$, and since $\tau^*(H) \ge 1$ and $\delta(H) \ge 1$ the result is true. We may assume then that $|E(H^w)| \ge 2$. By (5.1) applied to H^w ,

$$\tau(H^w) \le 2\delta(H^w)\varepsilon^{-1}\log(11\varepsilon^{-1}).$$

But $\varepsilon^{-1} = \tau^*(H)$, and $\delta(H^w) \leq \delta(H)$ by (5.3), and $\tau(H^w) \geq \tau(H)$ as is easily seen; and so

$$\tau(H) \le 2\delta(H)\tau^*(H)\log(11\tau^*(H))$$

as required.

(5.5) Let H be a hypergraph, and let $d \ge 1$ be an integer. Then $\delta < {\lambda_d + 1 \choose d}$. $[\lambda_d(H)]$ was defined in Section 1.

Proof. Suppose that $\delta(H) \geq {\lambda_d(H)+1 \choose d}$. Let B be a set of cardinality $\lambda_d(H)+1$, and let A be the set of all subsets of B of cardinality d. Then $\delta(H) \geq |A|$, and we may therefore choose distinct u_A $(A \in A)$ in V(H) such that for every $X \subseteq S$ there is an edge $e \in E(H)$ with $S \cap e = X$, where $S = \{u_A : A \in A\}$. For each $b \in B$, let $X_b = \{u_A : A \in A, b \in A\}$. Then for each $b \in B$ there exists $e_b \in E(H)$ such that $S \cap e_b = X_b$. It follows that for all $A \in A$ and $b \in B$, $u_A \in e_b$ if and only if $b \in A$. Now since the sets X_b $(b \in B)$ are all distinct, so are the edges e_b $(b \in B)$. Let $A \in A$; then $\{e_b : b \in B, u_A \in e_b\} = \{e_b : b \in A\}$. Consequently, $\lambda_d(H) \geq |B|$, a contradiction.

From (5.4) and (5.5) we deduce the following.

(5.6) Let H be a hypergraph with every edge non-empty, and let $d \ge 1$ be an integer. Then

$$\tau \leq 2 \binom{\lambda_d + 1}{d} \tau^* \log(11\tau^*).$$

Let H be a hypergraph. We denote by H^t the hypergraph with $V(H^t) = E(H)$ and with

$$E(H^t) = \{ \{ e \in E(H) : e \in v \} : v \in V(H) \}.$$

Roughly, H^t is obtained from H by transposing the vertex/edge incidence matrix. However, we defined E(H) to be a set rather than a multiset, and so all edges of a hypergraph are distinct. Thus, since there may be pairs of vertices of H in precisely the same edges, it is possible that $|E(H^t)| \neq |V(H)|$; and in general $(H^t)^t \neq H$.

From (5.6) and (4.2) we deduce our main result, the following.

(5.7) Let H be a hypergraph with every edge non-empty, and let $d \ge 2$ be an integer. Then

$$\tau \leq 11 \lambda_d^d R(d,\lambda_d,\nu_{d-1})^d \log(8R(d,\lambda_d,\nu_{d-1})).$$

Proof. By (4.2) applied to H^t we deduce

$$\alpha^*(H^t) \le \frac{(d+1)^{d+1}}{d!d^d} R(d, \phi_d(H^t), \alpha_{d-1}(H^t))^d.$$

But $\alpha^*(H^t) = \tau^*(H)$ by linear programming duality, $\phi_d(H^t) = \lambda_d(H)$, and $\alpha_{d-1}(H^t) = \nu_{d-1}(H)$. We deduce that

$$\tau^*(H) \leq \frac{(d+1)^{d+1}}{d!d^d} R(d, \lambda_d(H), \nu_{d-1}(H))^d.$$

The result follows from (5.6), after some arithmetic.

By setting d=2 in (5.7) and using the fact that $R(2,r,s) \leq {r+s \choose r}$ (and hence $\log R(2,r,s) \leq r+s$) we obtain (1.1). In particular, it follows that if either ν or λ_2 is bounded above by a constant then τ is bounded above by a polynomial in λ_2 or ν respectively.

References

- [1] D. BIENSTOCK, and N. DEAN: Some obstructions to small face covers in planar graphs, *J. Combinatorial Theory*, (B), to appear.
- [2] A. BLUMER, A. EHRENFEUCHT, D. HAUSSLER, and M. K. WARMUTH: Learnability and the Vapnik-Čhervonenkis dimension, J. Assoc. Comp. Mach. 36 (1989), 929-965.
- [3] J. FOLKMAN: Notes on the Ramsey number N(3,3,3,3), J. Combinatorial Theory, (A), 16 (1974), 371-379.
- [4] D. HAUSSLER, and E. WELZL: ε-nets and simplex range queries, Discrete Comput. Geom. 2 (1987), 127–151.
- [5] J. KOMLÓS, J. PACH, and G. WOEGINGER: Almost tight bounds for epsilon-nets, Disc. and Comput. Geom., 7 (1992), 163-173.
- [6] J. PACH, and J. TÖRŐCSIK: Some geometric applications of Dilworth's Theorem, Proc. 9th ACM Symposium on Comput Geom. 1993.
- [7] E. Slud: Distribution inequalities for the binomial law, Annals of Probability 5 (1977), 404–412.
- [8] V. N. VAPNIK, and A. YA. CHERVONENKIS: On the uniform convergence of relative frequencies of events to their probabilities, *Theory Probab. Appl.* 16 (1971), 264–280.

Guo-Li Ding

Department of Mathematics Louisiana State University Baton Rouge, LA 70803 ding@math.lsu.edu Paul Seymour and Peter Winkler

Bellcore 445 South Street Morristown, NJ 07960 pds@bellcore.com pw@bellcore.com